General Health

General health issues, Medical conditions, Research and studies and more

Mental Health

Natural Medicine

Nutritional supplements, Herbs, Alternative medicine and more…

Wellness & Lifestyle

Nutrition, Diets, Healthy living, Detox, Exercise and Physical Fitness, Sports Fitness and more…

Women’s Health

Relationships, Pregnancy, Birth control, Menopause and more

Home » Information, News

Making the worms turn.

Article / Review by on February 2, 2012 – 8:58 pmNo Comments

Making the worms turn
Biophysicist and his lab pioneer ways to track, influence roundworm nervous systems

Aravinthan Samuel and researchers in his lab set to work designing equipment that could measure nerve activity in living, wiggling worms. They first succeeded three or four years ago, becoming the first to record neural activity in freely moving worms. Then, last year, they topped that, using pulses of green and blue light on worms that had been genetically modified so that their nerves contained light-activated proteins. This allowed researchers to exert control over the worms by aiming pulses of light at specific nerves./ Stephanie Mitchell/Harvard Staff PhotographerAravinthan Samuel and researchers in his lab set to work designing equipment that could measure nerve activity in living, wiggling worms. They first succeeded three or four years ago, becoming the first to record neural activity in freely moving worms. Then, last year, they topped that, using pulses of green and blue light on worms that had been genetically modified so that their nerves contained light-activated proteins. This allowed researchers to exert control over the worms by aiming pulses of light at specific nerves./ Stephanie Mitchell/Harvard Staff Photographer

To biophysicist Aravinthan Samuel, the roundworm Caenorhabditis elegans provides a pathway to understanding the brain and nervous system, first of the worm, then of higher animals, and even, perhaps, of humans.

But to Samuel, working on anesthetized or immobilized worms can only tell you so much about how the brain and nervous system work. To truly understand the system, researchers need to see it in action.

So Samuel and researchers in his lab set to work designing equipment that could measure nerve activity in living, wiggling worms. They first succeeded three or four years ago, becoming the first to record neural activity in freely moving worms. Then, last year, they topped that, using pulses of green and blue light on worms that had been genetically modified so that their nerves contained light-activated proteins. This allowed researchers to exert control over the worms by aiming pulses of light at specific nerves.

To do this, they had to design some sophisticated equipment: a tracking microscope to follow the worms’ movements and image-processing software to estimate the location of individual neurons and control a mirror to direct light to the target nerve cells.

The system worked spectacularly. Researchers were able to simulate a touch that caused the worms to recoil by shining a light at a nerve near the worms’ front. They were able to goose the worms into action by shining a light at a nerve toward their back end. They were able to steer a worm left and right and even get it to lay an egg, all without a single physical touch.

At the time, Samuel described the method as perhaps his lab’s “greatest invention” and said it would provide a new tool in the arsenal of researchers seeking to understand the nervous system.

Today, Samuel and members of his lab are moving ahead with their work on the roundworm. Samuel, a physics professor who uses the tools of that field to explore important biological questions, said he chose to work on C. elegans, a millimeter-long roundworm often used in laboratory research, for several reasons. It is transparent, so researchers can see what’s going on inside it, and it’s so simple that researchers have all of its 302 neurons mapped out. That means researchers seeking a beachhead from which to explore the complex workings of the nervous system can look for basic principles in C. elegans that would also apply to more complex creatures.

After years working on C. elegans, Samuel’s laboratory is tackling increasing complexity. A few years ago, the researchers began working on larva of the fruit fly Drosophila. While Drosophila is another commonly studied laboratory animal — favored for genetics research because of its short life span — it is usually studied in its adult fly form. Its wormlike larva, which Samuel said has a nervous system an order of magnitude more complex than C. elegans, is not as widely studied. One project, if successful, will yield a complete map of the nerves involved in the larvae’s sensitivity to light and heat.

Although he has been on Harvard’s faculty since 2003, Samuel has been at the University far longer, for 23 years. After growing up in Sidney, New York with an interest in mathematics and physics, Samuel came to Harvard as an undergraduate. While looking for laboratories where he could conduct biological or physics research, he visited the lab of Howard Berg, a biophysicist who studies movement in bacteria. Samuel found a home there, conducting both undergraduate and graduate studies under Berg.

“Everything he touched seemed to work. He roamed and read widely. At one point he was learning Japanese … and reading James Joyce,” Berg said. “We are lucky to have him here.  He is working at the interface of physics and biology and needs the support of both communities.”

Samuel said he was attracted to Berg’s lab — and biophysics generally — because so many fundamental biological questions remain unanswered that he felt there were ample opportunities to conduct basic research.

“You can do fundamental work quickly. That’s not so easy to do in physics,” Samuel said.

Samuel received his doctorate in biophysics in 1999, spent four years doing postdoctoral research at Harvard, and then became an assistant professor of physics in 2003. He became an associate professor in 2007 and professor of physics in 2010.

Over his career, Samuel has come to understand what he calls the “inefficiencies” in science, the research down blind alleys that can consume a lot of effort but yield no results. As the leader of his own lab, Samuel said he tries to touch base with each lab member daily instead of waiting for lab meetings, to head off forays down paths that won’t prove fruitful.

“I try to make sure everyone is working on solvable problems,” Samuel said.

###

About Harvard Medical School (HMS)

Driving Change. Building Momentum. Making History. 

“Since 1872, Harvard Medical School has been the incubator of bold ideas—a place where extraordinary people advance education, science and health care with unrelenting passion.

Whether training tomorrow’s doctors and scientists, decoding the fundamental nature of life, advancing patient care or improving health delivery systems around the world, we are never at rest. Allied with some of the world’s best hospitals, research institutes and a University synonymous with excellence, the School’s mission remains as ambitious as it is honorable: to alleviate human suffering caused by disease.”

More at Harvard Medical School & Harvard Medical School. Generations of Leaders.

Harvard Medical School. Medicinezine.com Harvard Medical School (HMS) logo

_________________________________________________

###

About Harvard School of Public Health (HSPH)

Harvard School of Public Health is dedicated to advancing the public’s health through learning, discovery and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children’s health to quality of care measurement; from health care management to international health and human rights.

More at Harvard School of Public Health (HSPH) & Harvard School of Public Health (HSPH). History.

Medicinezine.com Harvard School of Public Health (HSPH) Logo 540 ok

_________________________________________________

###

About Harvard University.

Established in 1636, Harvard is the oldest institution of higher education in the United States. The University, which is based in Cambridge and Boston, Massachusetts, has an enrollment of over 20,000 degree candidates, including undergraduate, graduate, and professional students. Harvard has more than 360,000 alumni around the world.

Harvard University is devoted to excellence in teaching, learning, and research, and to developing leaders in many disciplines who make a difference globally. Harvard faculty are engaged with teaching and research to push the boundaries of human knowledge. For students who are excited to investigate the biggest issues of the 21st century, Harvard offers an unparalleled student experience and a generous financial aid program, with over $160 million awarded to more than 60% of our undergraduate students. The University has twelve degree-granting Schools in addition to the Radcliffe Institute for Advanced Study, offering a truly global education.

‘Universities nurture the hopes of the world: in solving challenges that cross borders; in unlocking and harnessing new knowledge; in building cultural and political understanding; and in modeling environments that promote dialogue and debate… The ideal and breadth of liberal education that embraces the humanities and arts as well as the social and natural sciences is at the core of Harvard’s philosophy. ’/ Drew Gilpin Faust

More About Harvard University & About Harvard University. Information.

###

*  The above story is adapted from materials provided by Harvard University

_________________________________________________________________

Medicinezine.com Harvard University Logo

Tags: , , , , , , , ,

Leave a comment!

Add your comment below, or trackback from your own site. You can also subscribe to these comments via RSS.

Be nice. Keep it clean. Stay on topic. No spam.

You can use these tags:
<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>