New subtype of ovarian cancer identified
New subtype of ovarian cancer identified
Harvard researchers believe it may be vulnerable to anti-angiogenic drugs
Scientists at Harvard-affiliated Dana-Farber Cancer Institute have identified a subtype of ovarian cancer able to build its own blood vessels, suggesting that such tumors might be especially susceptible to “anti-angiogenic” drugs that block blood vessel formation.
In a study published in the online journal PloS ONE, the investigators estimate that the subtype may account for a third of all serous ovarian cancers, a common cancer of the surface of the ovaries. The discovery of the subtype, made by analyzing data from the clinical records of more than 1,500 serous ovarian cancer patients and samples of their tumors, may spur clinical trials to determine if patients with the subtype can benefit from anti-angiogenic therapies now being tested in other cancers.
“Unlike breast cancer, where we can distinguish different subtypes based on their genetic signatures, ovarian cancer has been viewed as a monolithically homogenous disease — each tumor very much like every other,” says John Quackenbush, the study’s co-senior author with his Dana-Farber colleague Ursula Matulonis. “With this study, we’ve shown that serous ovarian cancer exists in at least one distinct subtype at the molecular level, raising the possibility that it will be vulnerable to therapies directed at its molecular weaknesses.”
Ovarian cancer is the fifth-leading cause of cancer death for women in the United States, responsible for more than 15,000 deaths annually in this country, according to the American Cancer Society. High-grade serous ovarian cancers — the focus of the current study — are one of several varieties of tumors that appear in the “epithelial” tissue lining the ovaries. Epithelial tumors account for about half of all ovarian cancers. (“Serous” refers to tumors that are found in tissues that produce a serum-like fluid. “High-grade” refers to the highly abnormal appearance of the tumor’s cells under a microscope.)
Although many ovarian cancers initially recede or grow more slowly when treated with conventional, platinum-based chemotherapy drugs, the vast majority overcome that tendency and begin to grow again.
In the current study, researchers scanned the activity of thousands of genes in high-grade serous ovarian cancers from 129 patients with an advanced stage of the disease. They then sifted the data using an algorithm called rISIS, which randomly assigns the tumor samples to different groups until it finds a grouping with a distinct set of genetic characteristics. That grouping represents a potential cancer subtype.
The technique yielded four possible subtypes of high-grade serous ovarian cancer, but only one of them held up when researchers applied a different technique for scanning gene activity. When researchers cataloged the genes that were particularly active — or “highly expressed” — in that single subtype, a key trend appeared: Many of the genes were known to be involved in angiogenesis, the process by which tumors build blood vessels to tap into the bloodstream for oxygen and nutrients. This distinctive array of overactive genes was dubbed the “angiogenesis signature.”
A common shortcoming of gene-profiling studies is that the results often aren’t reproducible: Different labs obtain different gene signatures for the same types of cancer. To ensure their findings were not skewed by their lab procedures or testing methods, the Dana-Farber investigators analyzed data from 10 published, independent studies of gene expression in serous ovarian cancer. Together, these studies involved 1,606 ovarian cancer patients.
“The analysis confirmed our finding,” said Quackenbush, a professor of computational biology and bioinformatics at the Harvard School of Public Health. “The angiogenic [blood vessel-producing] subtype is real.” When investigators analyzed the medical records of those 1,606 patients, they found that those with the angiogenic subtype tended to have more-advanced, aggressive tumors than those without the subtype.
A clinical trial will be necessary to determine if angiogenesis-blocking drugs are particularly effective in patients with the angiogenic subtype. But there is reason for optimism: About 30 percent of serous ovarian cancer patients who receive angiogenesis inhibitors in a clinical trial benefit from the drugs; and the angiogenic subtype comprises about 30 percent of all serous ovarian cancers. “It is a test like this that may in the future help us select which patients will benefit most from a drug like Avastin,” says Matulonis, an associate professor of medicine at Harvard Medical School.
The researchers believe that their classification of this new subtype has great potential to influence the treatment many patients receive and improve outcomes for a significant number of people with this disease. “The approach we’ve taken in this study offers a powerful way of identifying molecular subtypes of other cancers as well,” says Quackenbush.
The first authors of the study are Stefan Bentink and Benjamin Haibe-Kains, of Dana-Farber and the Harvard School of Public Health. Co-authors include Thomas Risch, Kristina Holton, and Renee Rubio of Dana-Farber; Joyce Liu and Aedin Culhane of Dana-Farber and the Harvard School of Public Health; Ronny Drapkin of Dana-Farber and Brigham and Women’s Hospital; Jian-Bing Fan, Craig April, Jing Chen, and Eliza Wickham-Garcia of Illumina Inc. of San Diego; and Michelle Hirsch of Brigham and Women’s.
The study was supported by the Dana-Farber Cancer Institute Women’s Cancer Program, the Strategic Plan Fund, and the Madeline Franchi Ovarian Cancer Research Fund at Dana-Farber.
Photo by Amanda Swinhart/Harvard Staff Photographer
###
About Harvard Medical School (HMS)
Driving Change. Building Momentum. Making History.
“Since 1872, Harvard Medical School has been the incubator of bold ideas—a place where extraordinary people advance education, science and health care with unrelenting passion.
Whether training tomorrow’s doctors and scientists, decoding the fundamental nature of life, advancing patient care or improving health delivery systems around the world, we are never at rest. Allied with some of the world’s best hospitals, research institutes and a University synonymous with excellence, the School’s mission remains as ambitious as it is honorable: to alleviate human suffering caused by disease.”
More at Harvard Medical School & Harvard Medical School. Generations of Leaders.
_________________________________________________
###
About Harvard School of Public Health (HSPH)
Harvard School of Public Health is dedicated to advancing the public’s health through learning, discovery and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children’s health to quality of care measurement; from health care management to international health and human rights.
More at Harvard School of Public Health (HSPH) & Harvard School of Public Health (HSPH). History.
_________________________________________________
###
About Harvard University.
Established in 1636, Harvard is the oldest institution of higher education in the United States. The University, which is based in Cambridge and Boston, Massachusetts, has an enrollment of over 20,000 degree candidates, including undergraduate, graduate, and professional students. Harvard has more than 360,000 alumni around the world.
Harvard University is devoted to excellence in teaching, learning, and research, and to developing leaders in many disciplines who make a difference globally. Harvard faculty are engaged with teaching and research to push the boundaries of human knowledge. For students who are excited to investigate the biggest issues of the 21st century, Harvard offers an unparalleled student experience and a generous financial aid program, with over $160 million awarded to more than 60% of our undergraduate students. The University has twelve degree-granting Schools in addition to the Radcliffe Institute for Advanced Study, offering a truly global education.
‘Universities nurture the hopes of the world: in solving challenges that cross borders; in unlocking and harnessing new knowledge; in building cultural and political understanding; and in modeling environments that promote dialogue and debate… The ideal and breadth of liberal education that embraces the humanities and arts as well as the social and natural sciences is at the core of Harvard’s philosophy. ’/ Drew Gilpin Faust
More About Harvard University & About Harvard University. Information.
###
* The above story is adapted from materials provided by Harvard University
_________________________________________________________________