Extracellular matrix identified as key to spreading in biofilms.
Scourge source.
Extracellular matrix identified as key to spreading in biofilms.
Top view of a Bacillus subtilis colony in conditions where extracellular matrix is produced, leading to biofilm formation./ Courtesy of Hera Vlamakis
New research at Harvard explains how bacterial biofilms expand on teeth, pipes, surgical instruments, and crops.
Through experiment and mathematical analysis, researchers have shown that the extracellular matrix (ECM), a mesh of proteins and sugars that can form outside bacterial cells, creates osmotic pressure that forces biofilms to swell and spread. The ECM mechanism is so powerful that it can increase the radius of some biofilms fivefold within 24 hours.
The results have been published in the Proceedings of the National Academy of Sciences.
Biofilms, large colonies of bacteria that adhere to surfaces, can be harmful in a wide range of settings, causing tooth decay, hospital infections, agricultural damage, and corrosion. Finding ways to control or eliminate biofilms is a priority for many industries.
In order for a biofilm to grow, a group of bacterial cells must first adhere to a surface and then proliferate and spread. When a vast number of cells are present, this can translate into the creation of a filmy surface spanning several meters.
“Our work challenges the common picture of biofilms as sedentary communities by showing how cells in a biofilm cooperate to colonize surfaces,” says lead author Agnese Seminara, a research associate at the Harvard School of Engineering and Applied Sciences (SEAS).
Several types of biofilms have been characterized based on composition and antibiotic resistance, but until now it has not been clear what roles the whiplike flagella and the ECM play in the outward movement of cells.
While the presence of a flagellum has traditionally been associated with greater movement capability, the new research has found that a flagellum actually confers little advantage in the formation of biofilms. In the Harvard study, mutant bacteria lacking flagella were able to spread at almost the same rate as the wild-type (natural) ones. Mutants that could not secrete the ECM, however, showed stunted growth.
The team of physicists, mathematicians, chemists, and biologists examined the formation of biofilms in Bacillus subtilis, a type of rod-shaped bacteria often found in soil. Their focus on this particular species was led by Roberto Kolter, professor of microbiology and immunobiology at Harvard Medical School and an expert on biofilms and the genomics of B. subtilis.
“This project establishes a link between the phenotype, the physically observable traits of biofilm growth, and the genetic underpinning that allows spreading to happen in B. subtilis,” said co-principal investigator Michael Brenner, the Glover Professor of Applied Mathematics and Applied Physics at SEAS.
The researchers had speculated about a possible connection between the biofilm’s quest for nutrition and the process of spreading. Because biofilms absorb nutrients through their exposed surface area, they can only swell vertically to a certain point before the surface-area-to-volume ratio makes it impossible to adequately nourish every cell. At this point, the biofilm must begin to spread outward so that the surface area increases along with the number of cells.
The ECM, a complex mesh of proteins, sugars, and other components outside of the individual cells, holds the key to one aspect of this movement: it apparently increases osmotic pressure within the biofilm.
In response to the increased pressure, the biofilm immediately absorbs water from its surroundings, causing the entire mass to swell upward. The final change in the shape of the biofilm is due to a combination of this swelling and the horizontal spreading that follows.
Seminara and Brenner created a mathematical model that mirrored many of the team’s physical observations. The model supported the experimental observations; by considering the relationship between swelling and spreading, they were able to find the “critical” time at which horizontal outward motion begins.
“This work is led by theoretical predictions which were tested by experiment and proved to be correct,” said co-principal investigator David Weitz, Mallinckrodt Professor of Physics and Applied Physics at SEAS and co-director of the BASF Advanced Research Initiative at Harvard. “The results also demonstrate how simple physical principles can provide considerable insight into the behavior of biofilms.”
The motion of biofilms represents only a small part of a complex subject. Further research will investigate how biofilms adapt and possibly manipulate their environment. The ultimate goal is to alter biofilms’ behavior to minimize their harmful effects.
“The natural question at this point is: do cells actively control biofilm expansion and can they direct it toward desired targets?” said Seminara. “This is a first step toward understanding the striking evolutionary success of these ubiquitous organisms, and it may open the way to unconventional methods of biofilm control.”
Seminara, Brenner, and Weitz worked with Thomas Angelini, an assistant professor at the University of Florida and a former member of the Weitz lab; James Wilking, a SEAS research associate in applied chemistry; Senan Ebrahim ’12, an undergraduate at Harvard; and Kolter and Hera Vlamakisof Harvard Medical School.
The research was supported by the BASF Advanced Research Initiative at Harvard, the Seventh European Community Framework Programme, the National Institutes of Health, and the Harvard Materials Research Science and Engineering Center, which is supported by the National Science Foundation.
By Mureji Fatunde ’12
SEAS Communications
The paper is available here.
###
About Harvard Medical School (HMS)
Driving Change. Building Momentum. Making History.
“Since 1872, Harvard Medical School has been the incubator of bold ideas—a place where extraordinary people advance education, science and health care with unrelenting passion.
Whether training tomorrow’s doctors and scientists, decoding the fundamental nature of life, advancing patient care or improving health delivery systems around the world, we are never at rest. Allied with some of the world’s best hospitals, research institutes and a University synonymous with excellence, the School’s mission remains as ambitious as it is honorable: to alleviate human suffering caused by disease.”
More at Harvard Medical School & Harvard Medical School. Generations of Leaders.
_________________________________________________
###
About Harvard School of Public Health (HSPH)
Harvard School of Public Health is dedicated to advancing the public’s health through learning, discovery and communication. More than 400 faculty members are engaged in teaching and training the 1,000-plus student body in a broad spectrum of disciplines crucial to the health and well being of individuals and populations around the world. Programs and projects range from the molecular biology of AIDS vaccines to the epidemiology of cancer; from risk analysis to violence prevention; from maternal and children’s health to quality of care measurement; from health care management to international health and human rights.
More at Harvard School of Public Health (HSPH) & Harvard School of Public Health (HSPH). History.
_________________________________________________
###
About Harvard University.
Established in 1636, Harvard is the oldest institution of higher education in the United States. The University, which is based in Cambridge and Boston, Massachusetts, has an enrollment of over 20,000 degree candidates, including undergraduate, graduate, and professional students. Harvard has more than 360,000 alumni around the world.
Harvard University is devoted to excellence in teaching, learning, and research, and to developing leaders in many disciplines who make a difference globally. Harvard faculty are engaged with teaching and research to push the boundaries of human knowledge. For students who are excited to investigate the biggest issues of the 21st century, Harvard offers an unparalleled student experience and a generous financial aid program, with over $160 million awarded to more than 60% of our undergraduate students. The University has twelve degree-granting Schools in addition to the Radcliffe Institute for Advanced Study, offering a truly global education.
‘Universities nurture the hopes of the world: in solving challenges that cross borders; in unlocking and harnessing new knowledge; in building cultural and political understanding; and in modeling environments that promote dialogue and debate… The ideal and breadth of liberal education that embraces the humanities and arts as well as the social and natural sciences is at the core of Harvard’s philosophy. ’/ Drew Gilpin Faust
More About Harvard University & About Harvard University. Information.
###
* The above story is adapted from materials provided by Harvard University
_________________________________________________________________